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Mathematical Foundations of
Photogrammetry
Summary. Photogrammetry uses photographic cameras to obtain information about the 3D world. The basic

principle of photogrammetric measurement is straightforward: recording a light ray in a photographic image

corresponds to observing a direction from the camera to the 3D scene point where the light was reflected or

emitted. From this relation, procedures have been derived to orient cameras relative to each other or relative

to a 3D object coordinate frame and to reconstruct unknown 3D objects through triangulation. The chapter

provides a compact, gentle introduction to the fundamental geometric relations that underly image-based 3D

measurement.

Introduction

The goal of photogrammetry is to obtain information about the physical environment from

images. This chapter is dedicated to the mathematical relations that allow one to extract ge-

ometric 3D measurements from 2D perspective images. 1 Its aim is to give a brief and gentle

overview for students or researchers in neighboring disciplines. For a more extensive treat-

ment the reader is referred to textbooks such as Hartley and Zisserman (2004) and McGlone

(2013).

The basic principle of measurement with photographic cameras—and many other optical

instruments—is simple: light travels along (approximately) straight rays; these rays are

recorded by the camera; thus, the sensor measures directions in 3D space. The fundamental

geometric relation of photogrammetry is thus a simple collinearity constraint: a 3D world

point, its image in the camera, and the camera’s projection center must all lie on a straight

line. The following discussion is restricted to the most common type of camera, the so-called

perspective camera, which has a single center of projection and captures light on a flat sensor

plane. It should however be pointed out that the model is valid for all cameras with a single

center of projection (appropriately replacing only the mapping from image points to rays in

space), and extensions exist to noncentral projections along straight rays (e.g., Pajdla, 2002).

In a physical camera the light-sensitive sensor plane is located behind the projection center,

and the image is captured upside down (the “upside-down configuration”). However, there
1 Beyond geometric measurement, photogrammetry also includes the semantic interpretation of images and

the derivation of physical object parameters from the observed radiometric intensities. The methodological

basis for these tasks is a lot broader and less coherent, and is not treated here.
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exists a symmetrical setup with the image plane located in front of the camera, as in a slide

projector (the “upright configuration”), for which the resulting image is geometrically iden-

tical. For convenience the latter configuration is used here, with the image plane between

object and camera.

Preliminaries and Notation

To understand the material in this chapter, the reader should possess basic knowledge of

engineering mathematics (linear algebra and calculus) and should be familiar with the basic

notions of homogeneous coordinates and projective geometry found in textbooks such as

Semple and Kneebone (1952).

In terms of notation, scalars will be denoted in italic font x, vectors in bold font x and

matrices in sanserif font X. The symbol I is reserved for an identity matrix of size 3× 3, and

0 denotes a 3-vector of zeros.

All coordinate systems are defined as right handed. Three coordinate systems are required to

describe a perspective camera (see Fig. 1):

• the 3D object coordinate system;

• the camera coordinate system, which is another 3D coordinate system, attached to the

camera such that its origin lies at the projection center and the sensor plane is parallel

to its xy-plane and displaced in positive z-direction;

• the 2D image coordinate system in the sensor plane; its origin lies at the upper left

corner of the image, and its x- and y-axis are parallel to those of the camera coordi-

nate system; for digital cameras it is convenient to also align the x-axis with the rows

of the sensor array.
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(a) object coordinates

y

x~

~ z~
x~

c

(b) camera coordinates

xy
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xH

(c) image coordinates

Fig. 1. Coordinate systems: X are the 3D object coordinates of a point; the 3D camera coordinates of the same

point are x̃; the 2D image coordinates of its projection are x.

To distinguish these coordinate systems, uppercase letters X refer to object coordinates,

lowercase letters with tilde x̃ to camera coordinates, and plain lowercase letters x to image

coordinates.
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Transposition of a vector or matrix is written X>, and the cross-product between two 3-

vectors is denoted either as x × y, or using the cross-product matrix [x]×y, where for x =

[u, v, w]>

[x]× =


0 −w v

w 0 −u
−v u 0

 .

The Kronecker product between two vectors or matrices is denoted X⊗ Y, such that

X⊗ Y =


x11Y x12Y . . . x1nY

x21Y x22Y . . . x2nY
...

... . . . ...

xm1Y xm2Y . . . xmnY

 . (1)

Some further matrix operators are required: the determinant det(X), the vectorization vec(X) =

x = [X11, X12, . . . , Xmn]> and the diagonal matrix (here for a 3-dimensional example)

diag(a, b, c) =


a 0 0

0 b 0

0 0 c

 .

Geometric entities are usually assumed to be given in homogeneous coordinates, so a vector

X = [U, V,W, T ]> refers to a 3D object point with Euclidean coordinates 1
T

[U, V,W ]>,

where T 6= 0 is the projective scale.2 Similarly, a 2D image point is x = [u, v, t]>. If

Euclidean vectors are needed they are denoted with a superscript e, so, for example, the

Euclidean image point is xe = [x, y]> = 1
t
[u, v]>. Although stochastic uncertainty modeling

is not covered in this chapter, it should be noted that variance propagation is equally possible

in homogeneous notation (Förstner, 2010).

Single-view geometry

The collinearity equation

The mapping with an ideal perspective camera can be decomposed into two steps, namely

1. a transformation from object coordinates to camera coordinates, referred to as exterior

orientation, and

2. a projection from camera coordinates to image coordinates with the help of the cameras

interior orientation.
2 Historically, much of the mathematics of photogrammetry was developped in Euclidean notation, and that

form is still used in several textbooks. The projective formulation has found widespread use since ≈ 2000.
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The exterior orientation is achieved by a translation from the object coordinate origin to the

origin of the camera coordinate system (i.e., the projection center), followed by a rotation

which aligns the axes of the two coordinate systems. With the Euclidean object coordinates

Xe
0 = [X0, Y0, Z0]

> of the projection center and the 3× 3 rotation matrix R this reads as

x̃ = MX =

[
R 0

0> 1

][
I −Xe

0

0> 1

]
X . (2)

Let us now have a closer look at the camera coordinate system. In this system, the image

plane is perpendicular to the z-axis. The z-axis is also called the principal ray and intersects

the image plane in the principal point, which has the camera coordinates x̃H = t̃ · [0, 0, c, 1]>

and the image coordinates x = t · [xH , yH , 1]>. The distance c between the projection center

and the image plane is the focal length (or camera constant). The perspective mapping from

camera coordinates to image coordinates then reads

x = [K|0]x̃ =


c 0 xH 0

0 c yH 0

0 0 1 0

 x̃ . (3)

This relation holds if the image coordinate system has no shear (orthogonal axes, respectively

pixel raster) and isotropic scale (same unit along both axes, respectively square pixels). If a

shear s and a scale difference m are present, they amount to an affine distortion of the image

coordinate system, and the camera matrix becomes

K =


c cs xH

0 c(1 +m) yH

0 0 1

 (4)

with five parameters for the interior orientation.

By concatenating the two steps from object to image coordinates we get the final projection,

i.e., the algebraic formulation of the collinearity constraint (Das, 1949)

x = λPX ∝ PX = KR[I| −Xe
0]X . (5)

If an object point X and its image x are both given at an arbitrary projective scale, they will

only satisfy the relation up to a constant factor. To verify the constraint, i.e. check whether x

is the projection of X, one can use the relation

x× PX = [x]×PX = 0 . (6)

Note that due to the projective formulation only two of the three rows of this equation are

linearly independent.
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Given a projection matrix P it is often necessary to extract the interior and exterior orientation

parameters. To that end, observe that

P = [M|m] = [KR| − KRXe
0] . (7)

The translation part of the exterior orientation immediately follows from Xe
0 = −M−1m.

Moreover, the rotation must by definition be an orthonormal matrix, and the calibration must

be an upper triangular matrix. Both properties are preserved by matrix inversion; hence the

two matrices can be found by QR decomposition of M−1 = R>K−1 (or, more efficiently, by

RQ decomposition of M).

Nonlinear errors

Equation (5) is valid for ideal perspective cameras. Real physical cameras obey the model

only approximately, mainly because the light is collected with the help of lenses rather than

entering through an ideal, infinitely small projection center (“pinhole”). The light observed

on a real camera’s sensor did not travel there from the object point along a perfectly straight

path, which leads to errors if one uses only the projective model.

In the image of a real camera we cannot measure the ideal image coordinates xe, but rather

the ones displaced by the nonlinear image distortion,

x̌e = xe +∆x(xe,q) , (8)

with q as the parameters of the model that describes the distortion. A simple example would

be a radially symmetric lens distortion around the principal point,

∆x =
xe − xeH

r
(q2r

2 + q4r
4) , r = ‖xe − xeH‖ . (9)

Here, the different physical or empirical distortion models are not further discussed. Instead,

the focus is on how to compensate the effect when given a distortion model and its parame-

ters q.

The corrections ∆x vary across the image, which means that they depend on the (ideal)

image coordinates x. This may be represented by the mapping

x̌ = H(x)x =


1 0 ∆x(x,q)

0 1 ∆y(x,q)

0 0 1

x . (10)

The overall mapping from object points to observable image points, including nonlinear

distortions, is now

x̌ = P̌(x)X = H(x)PX . (11)
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Note that the nonlinear distortions ∆x(xe,q) are a property of the camera, i.e., they are part

of the interior orientation, together with the calibration matrix K.

Equation (11) forms the basis for the correction of nonlinear distortions. The computation is

split into two steps. Going from object point to image point, one first projects the object point

to an ideal image point, x = PX, and then applies the distortion, x̌ = H(x)x. Note that for

practical purposes the (linear) affine distortion parameters s and m of the image coordinate

system are often also included in H(x) rather than in K.

For photogrammetric operations the inverse relation is needed, i.e., one measures the co-

ordinates x̌ and wants to convert them to ideal ones x, in order to use them as inputs for

procedures based on collinearity, such as orientation and triangulation. Often it even makes

sense to remove the distortion and synthetically generate perspective (straight line preserv-

ing) images as a basis for further processing. To correct the measured coordinates,

x = H−1(x)x̌ =


1 0 −∆x(x,q)

0 1 −∆y(x,q)

0 0 1

 x̌ , (12)

one would need to already know the ideal coordinate one is searching for, so as to evaluate

H(x). One thus resorts to an iterative scheme, starting from x ≈ x̌. Usually at most one

iteration is required, because the nonlinear distortions vary slowly across the image.

Two-view geometry

From a single image of an unknown scene, no 3D measurements can be derived, because

the third dimension (the depth along the ray) is lost during projection. The photogrammetric

measurement principle is to acquire multiple images from different viewpoints and measure

corresponding points, meaning image points which are the projections of the same physical

object point. From correspondences one can reconstruct the 3D coordinates via triangulation.

The minimal case of two views forms the nucleus for this approach.

The coplanarity constraint

A direct consequence of the collinearity constraint is the coplanarity constraint for two cam-

eras: the viewing rays through corresponding image points must be coplanar, because they

intersect in the 3D point. It follows that even if only the relative orientation between the

two cameras is known one can reconstruct a (projectively distorted) straight-line-preserving

model of the 3D world, by intersecting corresponding rays, and that if additionally the in-

terior orientations are known (the cameras are calibrated), one can reconstruct an angle-

preserving model of the world in the same way. The scale of such a photogrammetric model
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cannot be determined without external reference, because scaling up and down the two ray

bundles together does not change the coplanarity.

X

x

x’
ξ’ξ

e e’

l
l’

t

Fig. 2. The coplanarity constraint: the two projection rays ξ, ξ′ must lie in one plane, which also contains the

baseline t and the object point X. As a consequence, possible correspondences to an image point x must lie on

the epipolar line l′ and vice versa. All epipolar lines l intersect in the epipole e, the image of the other camera’s

projection center.

Now let us look at a pair of corresponding image points x in the first image and x′ in the

second image (Fig. 2). The coplanarity constraint (or epipolar constraint) states that the

two corresponding rays in object space must lie in a plane. By construction that plane also

contains the baseline t = Xe
0
′−Xe

0 between the projection centers. From (2) and (3) the ray

direction through x in object space (in Euclidean coordinates) is ξ = R>K−1x, and similarly

for the second camera ξ′ = R′>K′−1x′.

Coplanarity between the three vectors implies

ξ · (t× ξ′) = x>K−>R[t]×R
′>K′−1x′ = x>Fx′ = 0 . (13)

The matrix F is called the fundamental matrix and completely describes the relative orienta-

tion. It has the following properties:

• l = Fx′ is the epipolar line to x′, i.e., the image of the ray ξ′ in the first camera.

Corresponding points to x′ must lie on that line, x>l = 0. Conversely, l′ = F>x is

the epipolar line to x.

• The left null-space of F is the epipole e of the first image, i.e. the image of the second

projection center X′0 in which all epipolar lines intersect, F>e = 0. Conversely, the

right null-space of F is the epipole of the second image.

• F is singular and has rank≤ 2, because [t]× has rank≤ 2. Accordingly, F maps points

to lines. It thus has seven degrees of freedom (nine entries determined only up to a

common scale factor, minus one rank constraint).

The coplanarity constraint is linear in the elements of F and bilinear in the image coordinates,

which is the basis for directly estimating the relative orientation.
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If the interior orientations of both cameras are known (the cameras have been calibrated), the

epipolar constraint can also be written in camera coordinates. The ray from the projection

center to x in the camera coordinate system is given by η = K−1x, and similarly η′ = K′−1x′.

With these direction vectors the epipolar constraint reads

η>R[t]×R
′>η′ = η>Eη′ = 0 . (14)

The matrix E is called the essential matrix and completely describes the relative orienta-

tion between calibrated cameras, i.e., their relative rotation and the direction of the relative

translation (the baseline). It has the following properties:

• E has rank 2. Additionally, the two nonzero eigenvalues are equal. E has five de-

grees of freedom, corresponding to the relative orientation of an angle-preserving

photogrammetric model (three for the relative rotation, two for the baseline direc-

tion).

• The constraint between calibrated rays is still linear in the elements of E and bilinear

in the image coordinates.

For completeness it shall be mentioned that beyond coplanarity, further constraints, so-called

trifocal constraints exist between triplets of images: if a corresponding straight line has been

observed in three images, then the planes formed by the associated projection rays must all

intersect in a single 3D line; see, for example, Hartley (1997) and McGlone (2013). This

topic is not further treated here.

Absolute orientation

The transformation from the coordinates of the angle-preserving photogrammetric model

Xm to a given 3D object coordinate system X is called absolute orientation. It corresponds

to a similarity transform and thus has seven degrees of freedom (translation, rotation and

scaling of the model).

X = SRTXm =

[
1
s
I 0

0> 1

][
R 0

0> 1

][
I −T
0> 1

]
Xm . (15)

Analytical operations

The input to the photogrammetric process are raw images, respectively, coordinates mea-

sured in those images. This section describes methods to estimate unknown parameters from

image coordinates, using the models developed above.
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Single-image orientation

The complete orientation of a single image has 11 unknowns (5 for the interior orientation

and 6 for the exterior orientation). An image point affords two observations; thus, at least

six ground control points in the object coordinate system and their corresponding image

points are required. An algebraic solution, known as the Direct Linear Transform or DLT

(Abdel-Aziz and Karara, 1971), is obtained directly from equation (6).

[x]×PX =
(
[x]× ⊗X>

)
p = 0 , (16)

with the vector p = vec(P) = [P11, P12, . . . , P34]
>. For each control point two of the three

equations are linearly independent. Selecting two such equations for each of N ≥ 6 ground

control points and stacking them yields a homogeneous linear system A2N×12p = 0, which

is solved with singular value decomposition to obtain the projection matrix P. Note that the

DLT fails if all control points are coplanar and is unstable if they are nearly coplanar. A

further critical configuration, albeit of rather theoretical interest, is if all control points lie on

a twisted cubic curve (Hartley and Zisserman, 2004).

The direct algebraic solution is not geometrically optimal, but can serve as a starting value for

an iterative estimation of the optimal Euclidean camera parameters; see (McGlone, 2013).

A further frequent orientation procedure is to determine the exterior orientation of a sin-

gle camera with known interior orientation. Three noncollinear control points are needed to

determine the six unknowns. The procedure is known as spatial resection or P3P problem.

a

b

c

s1

s2

s3

α
β

γ

Fig. 3. Spatial resection: the image coordinates together with the interior orientation give rise to three rays in

camera coordinates, forming a trilateral pyramid. Applying the cosine law on each of the pyramids faces relates

the pairwise angles α, β, γ between the rays and the known distances a, b, c between the object points to the

pyramids sides s1, s2, s3. Soving for these three lengths yields the camera coordinates of the three points.

The solution (Grunert, 1841) is sketched in Figure 3. With the known interior orientation,

the three image points are converted to rays in camera coordinates, ηi = K−1xi, i = 1 . . . 3.
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The pairwise angles between these rays are determined via cosα = 1
|η2||η3|η

>
2 η3 etc. In the

object coordinate system, the distances between the points are determined, a = |Xe
2 −Xe

3|,
etc. The three triangles containing the projection center now give rise to constraints

a2 = s22 + s23 − 2s2s3 cosα

b2 = s23 + s21 − 2s3s1 cos β

c2 = s21 + s22 − 2s1s2 cos γ

(17)

for the three unknowns s1, s2, s3. Substituting auxiliary variables u = s2
s1

and v = s3
s1

yields,

after some manipulations, a fourth-order polynomial for v and hence up to four solutions;

see (e.g., Haralick et al, 1994). Back-substitution delivers first u and then the three distances

s1, s2, s3. Given these distances, the ground control points in camera coordinates follow from

x̃ei = si · ηi|ηi| . The exterior orientation is then found by computing the rotation and translation

between the x̃i and the Xi.

There are two critical configurations for spatial resection: one where the projection center is

located on (or near) a circular cylinder generated by sweeping the circle through X1,X2,X3

along the triangle’s normal vector and the other when the control points lie on the cubic

horopter curve.

Based on the geometric construction (17), several other algebraic schemes exist to solve

the equation system; see (e.g., Haralick et al, 1994). For more than three control points, an

iterative optimal resection algorithm can be found in the literature (McGlone, 2013).

Relative orientation of two images

A further elementary operation is the relative orientation of images to gain a photogram-

metric model. The present chapter deals with the relative orientation of two images. Since

relative orientations can be transitively chained, that operation forms the elementary build-

ing block for orienting larger image networks (note, in practice, it is often preferred to chain

image triplets because the associated redundancy affords robustness; however that case is not

treated here).

The basis of relative orientation from observed image correspondences is the coplanarity

constraint (13). Since the constraint is linear in the unknown elements of the relative orien-

tation, it can be directly reordered and solved. Each corresponding point pair gives rise to an

equation (
x> ⊗ x′>

)
f = 0 , (18)

with f = vec(F̂) = [F11, F12, . . . , F33]
>. Stacking ≥8 such equations yields a regular, re-

spectively overdetermined, homogeneous equations system for f .

The direct solution ignores the rank deficiency of the fundamental matrix, instead using at

least 8 points to determine 7 unknowns. Due to measurement noise the resulting matrix F̂
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will not be a fundamental matrix. To correct this, one can find the nearest (according to the

Frobenius norm) rank-2 matrix by decomposing F̂ with SVD and nullifying the smallest

singular value,

F̂ = U · diag(λ1, λ2, λ3) · V> , F = U · diag(λ1, λ2, 0) · V> (19)

This so-called “8-point algorithm” (Longuet-Higgins, 1981) can be used in equivalent form

to estimate the essential matrix between two calibrated cameras. Reordering (14) to(
η> ⊗ η′>

)
e = 0 (20)

yields the entries of e = vec(Ê), and the solution is corrected to the nearest essential matrix

by enforcing the constraints on the singular values,

Ê = U · diag(λ1, λ2, λ3) · V> , E = U · diag(1, 1, 0) · V> (21)

Estimating the 7 unknowns of F or the 5 unknowns of E from 8 points is obviously not

a minimal solution, and thus not ideal—especially since a main application of the direct

solution is robust estimation in RANSAC-type sampling algorithms. A minimal solution for

F, called the “7-point algorithm”, can be obtained in the following way (von Sanden, 1908;

Hartley, 1994): only 7 equations (18) are stacked into A7×9f = 0. Solving this expression

with SVD yields a two-dimensional null-space

f(δ) = δv8 + v9 , (22)

with arbitrary δ. To find a fundamental matrix (i.e., a rank-deficient matrix) in that null-

space, one introduces the nine elements of f(δ) into the determinant constraint det(F) = 0

and analytically expands the determinant with Sarrus’ rule. This results in a cubic equation

for δ, and consequently in either one or three solutions for F.

Following the same idea, a “5-point algorithm” exists for the calibrated case (Nistér, 2004):

stacking (20) for five correspondences leads to a 4-dimensional null-space

e(δ, ε, ζ) = δv6 + εv7 + ζv8 + v9 (23)

Again this can be substituted back into the determinant constraint. Furthermore, it can be

shown that the additional constraints on the essential matrix can be written

EE>E− 1

2
trace(EE>)E = 0 (24)

in which one can also substitute (23). Through further—rather cumbersome—algebraic vari-

able substitutions, one arrives at a 10th-order polynomial in ζ , which is solved numerically.

For the (up to 10) real roots, one then recovers δ and ε, and thus E, through back-substitution.
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The fundamental matrix is ambiguous if all points are coplanar in object space. The corre-

sponding equations become singular in that case and unstable near it. On the contrary, the

essential matrix does not suffer from that problem and in fact can be estimated from only

four correspondences if they are known to be coplanar (Wunderlich, 1982).

Naturally, once initial values for the relative orientation parameters are available, an iter-

ative solution exists to find the geometrically optimal solution for an arbitrary number of

correspondences; see (McGlone, 2013).

Having determined E, it is in many cases necessary to extract explicit relative orientation

parameters (rotation and translation direction) for the image pair. Given the singular value

decomposition (21) and the two auxiliary matrices

W =


0 ±1 0

∓1 0 0

0 0 1

 , Z =


0 ±1 0

∓1 0 0

0 0 0

 (25)

the orientation elements are given by

[t]× = UZU> , R = UWV> (26)

which can be easily verified by checking E = [t]×R. The sign ambiguities in W and Z give

rise to four combinations, corresponding to all combinations of the “upright” and “upside-

down” camera configurations for the two images. The correct one is found by checking in

which one a 3D object point is located in front of both cameras.

Reconstruction of 3D points

For photogrammetric 3D reconstruction the camera orientations are in fact only an unavoid-

able by-product, whereas the actual goal is to reconstruct 3D points (note, however, that the

opposite is true for image-based navigation). The basic operation of reconstruction is trian-

gulation of 3D object points from cameras with known orientations Pi. A direct algebraic

solution is found from the collinearity constraint in the form (6). Each image point gives rise

to

([xi]×Pi)X = 0 (27)

of which two rows are linearly independent. Stacking the equations leads to an equation

system for the object point X. Solving with SVD yields a unique solution for two cameras

P1,P2, respectively, a (projective) least-squares solution for more than two cameras.

A geometrically optimal solution for two views exists, which involves numerically solving

a polynomial of degree 6 (Hartley and Sturm, 1997). Iterative solutions for ≥3 views also

exist. In general the algebraic solution (27) is a good approximation, if one employs proper

numerical conditioning.
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Orientation of multi-image networks

Most applications require a network of >2 images to cover the object of interest.3 By com-

binations of the elementary operations described above, the relative orientation of all images

in a common coordinate system can be found: either one can chain two-view relative ori-

entations together while estimating the relative scale from a few object points or one can

generate a photogrammetric model from two views and then iteratively add additional views

to it by alternating single-image orientation with triangulation of new object points. Absolute

orientation is accomplished (either at the end or at an intermediate stage) by estimating the

3D similarity transform that aligns the photogrammetric model with known ground control

points in the object coordinate system.

Obviously such an iterative procedure will lead to error buildup. In most applications, the

image network is thus polished with a global least-squares optimization of all unknown pa-

rameters. The specialization of least-squares adjustment to photogrammetric ray bundles,

using the collinearity constraint as functional model, is called bundle adjustment (Brown,

1958; Triggs et al, 1999; McGlone, 2013). Adjustment proceeds in the usual way: the con-

straints y = f(x) between observations y and unknowns x are linearized at the approximate

solution x0, leading to an overdetermined equation system δy = J δx. The equations are

solved in a least-squares sense,

N δx = n

N = J>S−1yy J , n = J>S−1yy δy ,
(28)

with Syy the covariance matrix of the observations. The approximate solution is then updated,

x1 = x0 + δx, and the procedure iterated until convergence.

In order to yield geometrically optimal solutions, the collinearity constraint is first trans-

formed to Euclidean space by removing the projective scale. Denoting cameras by index j,

object points by index i, and the rows of the projection matrix by P(1), P(2), P(3), we get

xeij =
P
(1)
j Xi

P
(3)
j Xi

, yeij =
P
(2)
j Xi

P
(3)
j Xi

(29)

These equations must then be linearized for all observed image points w.r.t. the orienta-

tion parameters contained in the Pj as well as the 3D object point coordinates Xi. More-

over, equations for the ground control points, as well as additional measurements such as

GPS/IMU observations for the projection centers, are added.

For maximum accuracy, it is also common to regard interior orientation parameters (includ-

ing nonlinear distortions) as observations of a specified accuracy rather than as constants
3 In aerial photogrammetry, the network is often called an “image block,” since the images are usually recorded

on a regular raster.
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and to estimate their values during bundle adjustment. This so-called self-calibration can

take different forms, e.g., for crowd-sourced amateur images, it is usually required to esti-

mate the focal length and radial distortion of each individual image, whereas for professional

aerial imagery, it is common to use a single set of orientation parameters for all images but

include more complex nonlinear distortion coefficients. For details about GPS/IMU integra-

tion, self-calibration etc. see (McGlone, 2013).

The normal equations for photogrammetric networks are often extremely large (up to >

106 unknowns). However, they are also highly structured and very sparse (<1% nonzero

coefficients), which can be exploited to efficiently solve them. The most common procedure

is to eliminate the largest portion of the unknowns, namely, the 3D object point coordinates,

with the help of the Schur complement. Let index x denote object point coordinates and

index q all other unknown parameters; then the normal equations can be written as[
Nxx Nxq

N>xq Nqq

][
δxx

δxq

]
=

[
nx

nq

]
. (30)

Inverting Nxx is cheap because it is block diagonal with individual (3×3)-blocks for each ob-

ject point. Using that fact the normal equations can efficiently be reduced to a much smaller

system:

N̄ δxq = n̄ , with

N̄ = Nqq − N>xqN
−1
xxNxq , n̄ = nq − N>xqN

−1
xxnx .

(31)

The standard way to solve the reduced normal equations is to adaptively dampen the equation

system with the Levenberg-Marquardt method (Levenberg, 1944; Nocedal and Wright, 2006)

for better convergence, i.e., the equation system is modified to

(N̄− λIq)δxq = n̄ , (32)

with Iq the identity matrix of appropriate size and the damping factor λ depending on the

success of the previous iteration. The system (32) is then reduced to a triangular form with

variants of Cholesky factorization. Using recursive partitioning and equation solvers which

exploit sparsity, it is possible to perform bundle adjustment for photogrammetric networks

with >10’000 cameras.

Due to automatic tie-point measurement as well as the sheer size of modern photogrammet-

ric campaigns, blunders—mainly incorrect tie point matches—are unavoidable in practice.

Therefore, bundle adjustment routinely employs robust methods such as iterative reweighted

least squares (IRLS) (e.g., Huber, 1981) to defuse, and subsequently eliminate, gross outliers.
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Conclusion

A brief summary has been given of the elementary geometry underlying photogrammetric

modeling, as well as the mathematical operations for image orientation and image-based

3D reconstruction. The theory of photogrammetry started to emerge in the nineteenth cen-

tury, most of it was developped in the twentieth century. The geometric relations that govern

the photographic imaging process, and their inversion for 3D measurement purposes, are

nowadays well understood; the theory is mature and has been compiled—in much more de-

tail than here—in several excellent textbooks (e.g., Hartley and Zisserman, 2004; McGlone,

2013; Luhmann et al, 2014). Still, some important findings, such as the direct solution for

relative orientation of calibrated cameras, are surprisingly recent.
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